The UniTN Discourse Parser in CoNLL 2015 Shared Task: Token-level Sequence Labeling with Argument-specific Models

نویسندگان

  • Evgeny A. Stepanov
  • Giuseppe Riccardi
  • Ali Orkan Bayer
چکیده

Penn Discourse Treebank style discourse parsing is a composite task of identifying discourse relations (explicit or nonexplicit), their connective and argument spans, and assigning a sense to these relations from the hierarchy of senses. In this paper we describe University of Trento parser submitted to CoNLL 2015 Shared Task on Shallow Discourse Parsing. The span detection tasks for explicit relations are cast as token-level sequence labeling. The argument span decisions are conditioned on relations’ being intraor intersentential. Non-explicit relation detection and sense assignment tasks are cast as classification. In the end-to-end closedtrack evaluation, the parser ranked second with a global F-measure of 0.2184

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UniTN End-to-End Discourse Parser for CoNLL 2016 Shared Task

Penn Discourse Treebank style discourse parsing is a composite task of detecting explicit and non-explicit discourse relations, their connective and argument spans, and assigning a sense to these relations. Due to the composite nature of the task, the end-to-end performance is greatly affected by the error propagation. This paper describes the end-to-end discourse parser for English submitted t...

متن کامل

A Minimalist Approach to Shallow Discourse Parsing and Implicit Relation Recognition

We describe a minimalist approach to shallow discourse parsing in the context of the CoNLL 2015 Shared Task.1 Our parser integrates a rule-based component for argument identification and datadriven models for the classification of explicit and implicit relations. We place special emphasis on the evaluation of implicit sense labeling, we present different feature sets and show that (i) word embe...

متن کامل

Two End-to-end Shallow Discourse Parsers for English and Chinese in CoNLL-2016 Shared Task

This paper describes our two discourse parsers (i.e., English discourse parser and Chinese discourse parser) for submission to CoNLL-2016 shared task on Shallow Discourse Parsing. For English discourse parser, we build two separate argument extractors for single sentence (SS) case, and adopt a convolutional neural network for Non-Explicit sense classification based on (Wang and Lan, 2015b)’s wo...

متن کامل

The DCU Discourse Parser: A Sense Classification Task

This paper describes the discourse parsing system developed at Dublin City University for participation in the CoNLL 2015 shared task. We participated in two tasks: a connective and argument identification task and a sense classification task. This paper focuses on the latter task and especially the sense classification for implicit connectives.

متن کامل

Improving a Pipeline Architecture for Shallow Discourse Parsing

We present a system that implements an end-to-end discourse parser. The system uses a pipeline architecture with seven stages: preprocessing, recognizing explicit connectives, identifying argument positions, identifying and labeling arguments, classifying explicit and implicit connectives, and identifying attribution structures. The discourse structure of a document is inferred based on these c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015